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harmful. They may harm the computed solution even if
eventually it converges to the correct limit. For example,Computations of slowly moving shocks by shock capturing

schemes may generate oscillations that appear as a wavy tail postshock oscillations may significantly inhibit the conver-
attached to the shock front. These oscillations are generated already gence of transient solutions to steady state. They would
by first-order schemes, but become more pronounced in higher- definitely be harmful to calculations of shock sound inter-order schemes due to their lower dissipation. We focus on two first-

actions, where the amplitudes of interest are very smallorder schemes which seem to exhibit different behaviors: (i) the
compared to the background flow.first-order upwind (UW) scheme which generates strong oscillations

and (ii) the Lax–Friedrichs scheme which appears not to generate The problem was first observed by Woodward and Col-
any disturbances at all. A key observation is that in the UW case, ella [5] and further studied by Roberts [4]. More recently,
the numerical viscosity in the shock family vanishes inside the slow

two papers have proposed explanations for this peculiarshock layer. Simple scaling arguments show that third-order effects
phenomenon. Arora and Roe [1] noted that while initialon the solution may no longer be neglected. We derive the third-

order modified equation for the UW scheme and regard the oscilla- shock data lie on the Hugoniot curve through, say, the left
tory solution as a traveling wave solution of the parabolic modified state, subsequent intermediate states inside the shock layer
equation plus a small perturbation. We then look at the governing usually do not. Hence, solutions of subsequent Riemann
equation for the perturbation, which points to a plausible mecha-

problems generate a whole fan of wave, not only the shocknism by which postshock oscillations are generated. It contains a
wave itself. Jin and Liu [2] interpreted the phenomenonthird-order source term that becomes significant inside the shock

layer, and a nonlinear coupling term which projects the perturbation in the context of traveling wave solutions for the modified
on all characteristic fields, including those not associated with the equation. They observed that slow captured shocks in gas
shock family. Q 1997 Academic Press dynamics admit (nonphysical) strong undershoots in the

momentum profiles, and they suggest that unsteadiness in
the momentum profile, and in particular in the momentum1. INTRODUCTION
spike, is the cause for the oscillations.

The work presented here benefits from both of theseNumerically captured shocks produce O(1) errors inside
papers. We remain within the framework of travelingthe shock layer. Within the shock capturing framework,
waves presented in [2] which we believe provides a suitableinaccuracies that are contained within the shock layer are
context for understanding the phenomenon. We haveregarded as acceptable, since this layer can be made arbi-
adopted from [1] the use of phase diagrams and numericaltrarily narrow by using fine computational grids. This
orbits, a tool which we find very insightful. What makeswould be a satisfactory state of affairs if indeed the errors
this phenomenon difficult to analyze is that it is inherentlyinduced remained within the shock layer.
nonlinear and occurs only in systems of equations; thusComputations of slowly moving shocks provide an exam-
the simplest setup for studying it is the 2 3 2 case. Weple where such errors escape outside the shock layer and
have focused on the isothermal Euler equations as onetake the form of a persistent wavy tail. These are amplitude
such example, and where appropriate we make commentserrors, not phase errors that are often considered less
about other systems. The arguments we put forward
equally apply to larger systems.1 This work was conducted while the author was a visiting member at

Two facts have caught our eyes: (i) Phase space diagramsCourant Institute of Mathematical Sciences, New York University. Work
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However, the wavelength of the oscillations with respect
to the grid, i.e., the number of grid points per period of
oscillation, is independent of the scheme and is related to
the ratio of the respective cross family characteristic speed,
say ulu1 , to the shock speed, s [1, 2, 5].

In our computations and analysis, we have used the
isothermal Euler equations

Wt 1 F(W)x 5 0 (1a)
FIG. 1. (a) Stationary shock, (b) slowly moving shock, and (c) fast

shock. Shock characteristics change sign across slow shock front.
W 5 S r

ru
D, F(W) 5 S ru

ru2 1 rc2D. (1b)

in the Lax–Friedrichs (LxF) scheme, they are impossible Here r is the density, u is the velocity, and c is the constant
to detect. In gas dynamics, both schemes generate solutions speed of sound (c2 5 cRT is constant in the isothermal
with deep undershoots in the momentum profiles [2]. Fact case) and is taken to be 1. We use A 5 ­F(W)/­W to denote
(i) seems to suggest that after a sufficiently long time, the the Jacobian matrix, R the matrix of right eigenvectors, and
discrete shock approaches a traveling wave, and this seems

L the diagonal matrix of the corresponding real eigenval-
to support the traveling wave framework of [2]. While the ues. For the isothermal Euler equations
theory in [2] explains the cause of the undershoots in the
momentum profiles, it cannot account for the distinctively
different behavior of the two schemes. We believe that

A 5 S 0 1

u2 2 c2 2u
D, R 5 S 1 1

u 2 c u 1 c
D,

(1c)
this difference is at the heart of the mechanism responsible
for generating postshock oscillations.

As in [1, 2], the emphasis in our work was not put on
L5 Su 2 c 0

0 u 1 c
D.

finding cures to the problem, but rather on uncovering the
mechanisms responsible for this phenomenon. To a great
extent, and this is also the conclusion of our work, the cure Figure 2 shows computations of slowly moving shocks,
is known; namely, add more numerical dissipation. In fact, performed by the LxF scheme (Fig. 2a) and the UW
we show that employing an ‘‘entropy fix’’ may eliminate scheme (Fig. 2b). Initial data correspond to a slow shock
the oscillations. This, as always, comes at the expense of moving to the right with speed s 5 0.05, WR 5 (rR , uR ) 5
added diffusion and hence has its disadvantages. However, (1, 221 s), and WL 5 (rL, uL) 5 (4, 20.5 1 s). For
if one wishes to remain within the simple shock capturing these data, ul1uL/s 5 uuL 2 1u/s P 30. We see that in both
framework, this may be a price one must learn to live calculations, the momentum profile develops a very strong
with. undershoot. As pointed out in [2], this undershoot is non-

physical, and is due to the effect of numerical viscosity in
2. SLOW SHOCKS the continuity equation. The other striking fact is that the

shock computed by the UW scheme (Fig. 2b) has a longSlow shocks are characterized by a sign change in the
wavy tail attached to it. The shock computed by the LxFshock characteristic across the shock front [1, 4, 5]. This
scheme (Fig. 2a) appears to be oscillation-free. Zoomingis certainly the case for stationary shocks, and so it will
into the oscillatory tail of the UW calculation (Fig. 3), weremain true if the shock is moving sufficiently slowly (see
count roughly 30 grid points per period of oscillation, inFig. 1). Another characterization of slow shocks is that
agreement with the ratio ul1(WL)u/s [5].they take many steps to cross one computational cell. It

is worth noting [1] that any shock may appear to be slow
3. NUMERICAL ORBITS AND TRAVELING WAVESif viewed from a frame of reference moving almost at the

shock speed. This boils down to superimposing a drift
velocity on the data. Thus, there is no connection between A very useful tool in understanding numerical shock

profiles is numerical phase diagrams [1]. The discrete pro-the apparent speed of the shock and its strength. In the
computations presented in this work, all shocks, fast or file of a captured shock spreads over several grid points,

which may be collected and plotted in phase space (r, ru).slow, are of identical strength. This eliminates one parame-
ter from the problem. In computations of slowly moving One solution profile does not provide enough data points

to plot an informative phase diagram. The points aheadshocks, different schemes generate oscillations of different
amplitudes, and some may not generate oscillations at all. of (behind) the shock collapse onto a single point in phase
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FIG. 2. Slowly moving shock by (a) LxF and (b) upwind schemes.

space, WR (WL), and the discrete profile may contain as
D(W)UW 5

1
2 SuA(W)u Dx

Dt
2 A2(W)D

(3)
few as 2–4 data points which is not enough to resolve a
numerical orbit. Using many different discrete shock pro-
files of a propagating shock at many different times t1 ,

D(W)LxF 5
1
2 SSDx

DtD2

I 2 A2(W)D.t2 , ..., tn allows one to resolve the numerical orbit and
provides useful information about the microscopic struc-
ture of the shock. As observed in [1], perfect shock data The validity of this conjecture can be tested. Substitute
take some time to settle into a discrete viscous-like profile. into (2) a traveling wave solution
However, once they do, discrete shock profiles maintain
their structure very faithfully at all later times and generate
extremely well-defined numerical orbits. Figure 4a shows
the numerical orbit for a UW computation. Data are the
same as in Fig. 2, except that this time the shock is fast
(s 5 1.5). The phase diagrams were generated from hun-
dreds of discrete solution profiles at different time steps
(omitting the first couple of hundred). The solution appears
to be following very accurately the same numerical
orbit.

A first candidate for what this orbit might represent is
a traveling wave solution to the modified equation

Wt 1 F(W)x 5 «(D(W)Wx)x , (2)

where the right-hand side of (2) is the effective numerical
viscosity of the scheme, and « is the mesh spacing. For the
UW and LxF schemes, « 5 Dt and the numerical viscosities
are the leading order terms in the scheme truncation error,

FIG. 3. Slowly moving shock by the UW scheme, S 5 0.05: Zoom.given respectively by
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FIG. 4b. Traveling wave orbit of a fast shock (S 5 1.5) by the up-FIG. 4a. Numerical orbit of a fast shock (S 5 1.5) by the upwind
wind scheme.scheme.

theory predicts, the orbits leave the state WL in a directionW(x, t) 5 W(j), j 5
x 2 st

« tangent to the shock family eigenvector r2 .
We now repeat these computations for the slowly mov-

W(x R 6y, t) R WL,R (4) ing shock example of Fig. 2. Figure 5 shows the numerical
orbit and the traveling wave solution corresponding to theW 9(x R 6y, t) R 0.
LxF scheme. The agreement between the two curves is
very good in this case too. Both curves are tangent to the

The parameter « scales out and Eq. (2) becomes the ODE shock eigenvector r2(WL) at the left state WL. As in Fig.
2, we observe the fact that the momentum profile is non-
monotone and admits a strong undershoot. Figure 6 shows2sW 9 1 F 9(W) 5 (D(W)W 9)9.
the numerical orbit and the traveling wave solution corre-

Integrating once over (2y, j) we get the nonlinear dynami-
cal system

W 9 5 D21(W)(2s(W 2 WL) 1 F(W) 2 FL) (5)

with rest points at WL (saddle) and WR (repeller). Equation
(5) is nonlinear and in general cannot be integrated exactly.
But it can be integrated numerically to give what we shall
call the ‘‘theoretical’’ traveling wave solution. Figure 4b
shows the traveling wave solution for the UW scheme for
the same shock data as in Fig. 4a (LxF generates very
similar results). For convenient comparison, the numerical
orbit of the PDE solution and the traveling wave solution
of the ODE are superimposed in Fig. 4c. The orbits are in
very good agreement, good enough to say that the discrete
PDE solution represents a traveling wave of (5). The close
agreement between the numerical and theoretical orbits
establishes that the traveling wave solution for the modified
equation is indeed an appropriate framework for interpre- FIG. 4c. Traveling wave and numerical orbit of a fast shock (S 5
ting discrete propagating shocks. Also shown in Fig. 4c are 1.5) by the upwind scheme. Also shown are the eigenvectors at the left

and right states.the eigenvectors at the left and right states. Note that as
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DUW becomes singular, and it is clear from Fig. 6 that
the parabolic modified equation (2) is not a good model
anymore. Indeed, the parabolic modified equation is valid
only as long as higher-order terms in the scheme truncation
errors are negligible. However, when D(W) becomes small
enough, the next term in the modified equation kicks in.
This can be seen from the following simple scaling argu-
ments.

4. SCALING ARGUMENTS

As a model for the modified equation up to third-order
terms, consider Burger’s equation with linear diffusion and
linear dispersion

Ut 1 UUx 5 «DUxx 1 «2BUxxx , (6)

FIG. 5. Numerical and traveling wave orbits of a slow shock (S 5
where « is the mesh size. For smooth solutions, all the0.05) by the LxF scheme.
derivatives are O(1) and the truncation error terms on the
right-hand side (RHS) of (6) scale naturally with «. By
contrast, traveling wave solutions have the form U(x, t) 5

sponding to the UW scheme. In this case, the numerical
U(x 2 st)/«), and « scales out of the problem. Hence for

orbit and the traveling wave solution give two different
all purposes « may be taken as 1. The modified equation

curves. Also note that the traveling wave orbit at WL is
remains asymptotically valid for weak traveling waves. The

tangent to the shock eigenvector r2(WL), but the numerical
small parameter which provides the scale for the problem

orbit is tangential to the cross eigenvector r1(WL). In fact,
is the strength of the wave d. Consider a weak traveling

the entire oscillatory tail projects onto the cross family
wave of the form

eigenvector r1(WL), which appears as a dense set of data
points near WL in Fig. 6. The fact that the oscillations lie

U(x, t) 5 U0 1 dU1(d p j), j 5 x 2 st, (7)in the cross characteristic field has been observed before
by other means [1, 2, 4]. In addition to the oscillations, we

where U0 is the linearized solution, d ! 1 is the wavealso note that the solution profile itself is modified and no
longer agrees with the theoretical traveling wave solution
of the parabolic PDE (2). Recall that this is the case where
postshock oscillations are generated (see Fig. 1).

The difference in behavior between the two schemes
is quite striking and calls for closer examination of the
respective modified equations. Inspecting the numerical
viscosities of the respective schemes suggests that the gen-
eration of the postshock oscillations may simply be a mani-
festation of an entropy violation due to vanishing dissipa-
tion, which is not dissimilar to several other situations
where schemes fail exactly for that reason [3].

The eigenvalue associated with a slowly moving traveling
wave, like slowly moving shocks, change sign across the
wave front. For a right moving slow traveling wave, the
eigenvalue behind the wave is positive, lL . 0, and that
ahead of the wave is negative, lR , 0. It follows that
somewhere inside the traveling wave profile, the eigen-
value changes sign, and in some neighborhood becomes
very small. For the LxF viscosity, DLxF, even when the
eigenvalue vanishes viscosity is still finite due to the pres-
ence of the term (Dx/Dt)2. For the UW scheme the situation FIG. 6. Numerical and traveling wave orbits of a slow shock (S 5

0.05) by the UW scheme.is different. The dissipation in the shock family vanishes,
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amplitude, and d p is the scale of the solution for some p shock layer, diffusion becomes so small that third-order
yet to be determined. Substituting into (6) we get effects become of equal importance. We note that an eigen-

value sign change always implies small diffusion in some
region. But it is possible to have small diffusion even with-2sd p11U 91 1 (U0 1 dU1 )d p11U91 5 Dd 2p11U01 1 Bd 3p11U-1 .
out an eigenvalue sign change. For third-order effects to

(8) kick in, it is enough that diffusion is small compared with
some measure of the wave strength. The p-system, for

If both D and B are O(1), the terms in the above equation example, admits only fast shocks in the sense that eigenval-
would balance as ues never change sign across a shock front. Nevertheless,

postshock oscillations may be observed [1]. In the example
presented in [1], there is no eigenvalue sign change across
the shock, but its magnitude is very small at the foot of
the shock (l2(WR) 5 Ï2/V 3

R 5 0.00388), possibly small

d p11(2s 1 U0)U91 5 0 R U0 5 s

d p12U1 U91 1 Dd 2p11U01 5 0 R

p 1 2 5 2p 1 1 R p 5 1

Bd 3p11U-1 5 O(d 4) R negligible.

(9) enough (compared with the shock strength) for a third-
order effect to appear.

4.1. Entropy Fix ‘‘Cure’’
However, if the diffusion coefficient D is sufficiently

The above analysis indicates that postshock oscillationssmall, then the diffusion and dispersion terms become com-
may be eliminated by not allowing the diffusion in theparable in magnitude. Assume that D 5 dd q for some q
shock family to become too small. It is easy to see why theto be determined, with d 5 O(1) and B 5 O(1); then
common practice of increasing numerical viscosity helps inbalancing the terms in Eq. (6) gives
removing postshock oscillations. It helps to keep the third-
order terms out of the problem. We have tried to use an
entropy fix approach to remove the oscillations.

d p11(2s 1 U0)U 91 5 0 R U0 5 s

d p12U1U91 1 dd 2p1q11U 01 5 Bd 3p11U-1 R

p 1 2 5 2p 1 q 1 1 5 3p 1 1 R p 5 q 5 As,

(10) The numerical flux formula for the UW is

Fj11/2 5
1
2

(Fj 1 Fj11) 1
1
2 O

n

k51
akulkurkimplying that as soon as D 5 O(Ïd), all three terms are

of the same order of magnitude. This makes perfect sense.
The nonlinearity causes the wave to steepen (scales like

and we replace ulku by max(ulku, d), where d is some mea-O(Ïd) rather than O(d)), and because the diffusion is
sure of the wave strength. Using the shock wave amplitudeweak, dispersion is needed for the wave to maintain a
d 5 uUR 2 ULu completely eliminates the oscillations butquasi-steady profile.
at the same time introduces unnecessarily large amountsIn the problem of slowly moving shocks, the diffusion
of dissipation. As a ‘‘local’’ measure of the wave strength,(also dispersion) is nonlinear. Based on the above argu-
we use uuj11 2 uju. For no good reason other than thements the solution scales differently depending on the flow
scaling suggested in the previous section, we have used aregime. Wherever D(W) 5 O(1), third-order effects are

negligible. Near an eigenvalue sign change inside a slow variable fix

FIG. 7. Slow shock (S 5 0.05) by upwind scheme with entropy fix.
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Wt 1 F(W)x 5
Dt
2 S(uA(W)uDx

Dt
Wx)x 2 WttD

(11)

2
Dt2

6 SSDx
DtD2

F(W)xxx 1 WtttD.

By time differentiating (11), time derivatives may be re-
placed by space derivatives (up to second order in the
mesh (Dx, Dt)). Wtt is approximated up to first order in
the mesh, Wttt up to zero order, to give

Wt 1 F(W)x 5 Dt(D(W)Wx)x 1 Dt2 S(W)x , (12a)

where

D(W) 5
1
2 SuAu Dx

Dt
2 A2D

FIG. 8. Numerical and traveling wave orbits of a slow shock (S 5

0.05) by the UW scheme with entropy fix.

S(W) 5 2
1
3

A(A2Wx )x 1
l

4
(A(uAuWx)x 1 uAu(AWx)x)

dj11/2 5 Ïuuj11 2 uj u. 2
l

4
(uAut Wx ) 1

1
12

(AtAWx ) 2
l2

6
(AWx )x

Limiting the diffusion from below in this manner, we (12b)
observe that the oscillations have pretty much disappeared
(Fig. 7). We also observe (Fig. 8) that the numerical and and l 5 Dx/Dt denotes the mesh ratio. The complexity of
traveling wave orbits that were distinctively different in the above expression is quite off-putting, so we lump all
Fig. 6 now practically coincide. We wish to stress that the the terms together and denote them by S(W). Scaling argu-
above entropy fix is not proposed here as a practical way ments may be used to simplify (12b).
of curing the problem, since it may require unacceptably We write the solution W as a sum of a traveling wave
large amounts of dissipation. This particular form of en- solution to (2), V, plus a perturbation, W,
tropy fix is expensive (due to square root operation) and
was used following the asymptotic scaling arguments of W 5 V 1 W.
Section 4. The entropy fix example is presented primarily
as numerical evidence to the validity of the theory we are With the assumption W ! V we linearize Eq. (12) about
putting forward. It is worth noting, though, that the fixed the traveling wave profile
UW scheme keeps a very narrow shock profile, much nar-
rower than the LxF scheme (compare with Fig. 2a). (V 1 W )t 1 (F(V ) 1 A(V )W )x

5. THIRD-ORDER MODIFIED EQUATION
5 DtSSD(V ) 1

­D
­W

(V )W D (V 1 W )xD
x
1 Dt2S(V )x .AND LINEARIZATION

(13)In this section we derive the third-order modified equa-
tion for the upwind scheme. Assuming that the solution is

The traveling wave solution V is assumed to satisfya small perturbation to a traveling wave solution of (2),
we linearize the modified equation about a traveling wave

V t 1 F(V )x 5 Dt(D(V )V x )x ; (14)solution and obtain the governing equation for the pertur-
bation. The purpose of this exercise is to point to certain

hence it follows from (13) that the perturbation, W, satisfiesterms that are present in the perturbation equation, terms
which we believe play an important role in the problem:
(i) a source-like term inside the shock layer and (ii) a

Wt 1 (A(V )W )x 5 Dt(D(V )Wx)x 1 DtSS­D
­W

(V )W DV xD
x

nonlinear coupling term between the wave fields.
The modified equation for the UW scheme up to third-

1 Dt 2S(V )x . (15)order terms is
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Note that the term ((­D/­W)(V )W )V x on the right- S(V ) generates perturbations, which, due to B(V ), get
projected onto all (here only two) characteristic fields.hand side of (15) is linear in W and can be recast as

• The projection onto the shock family gets swallowed
into the shock and modifies its profile. This is why in Fig.S­D

­W
(V )W DV x 3b the numerical orbit is very different from the traveling

wave solution.
• The projection onto the other family moves away with

the corresponding characteristic speed and results in the
oscillations that can be observed behind the shock.5 1

­D11

­u1
W1 1

­D11

­u2
W2

­D12

­u1
W1 1

­D12

­u2
W2

­D21

­u1
W1 1

­D21

­u2
W2

­D22

­u1
W1 1

­D22

­u2
W22S (V1 )x

(V2 )x
D

The mechanism described above refines some of the
observations made in [2], regarding the connection be-
tween traveling wave solutions to the modified equation
and postshock oscillations. It points to a possible cause; B(V ) SW1

W2
D

responsible for introducing unsteadiness into the slow
shock profile, and can explain the puzzling different behav-
ior of the UW and LxF schemes. While the momentumwhere B(V ) is given by
undershoot in the shock profile is an obvious numerical
artifact, it is not more of an artifact than any O(1) errors
inside the shock layer. Furthermore, spiky momentum pro-
files may have an unsteady nature (UW) or an effectively

51
­D11

­u1
(V1 )x 1

­D12

­u1
(V2 )x

­D11

­u2
(V1 )x 1

­D12

­u2
(V2 )x

­D21

­u1
(V1 )x 1

­D22

­u1
(V2 )x

­D21

­u2
(V1 )x 1

­D22

­u2
(V2 )x2. steady nature (LxF, UW with entropy fix). What appears

to be more significant is the fact that when dissipation in
the shock field vanishes, the modified equation ceases to
be a good model, and one needs to go (at least) one order

The equation for the perturbation, W, becomes higher in the modified equation and take into account
third-order perturbations. When this happens, the travel-
ing wave profiles steepen and become practically verticalWt 1 ((A(V ) 2 DtB(V ))W )x

(17) (this, incidentally, is easiest to see in the density profile).
5 Dt(D(V )Wx )x 1 Dt2S(V )x . Equation (17) identifies a source-like term for the pertur-

bations, a nonlinear coupling between the fields, and a
All the statements below are based on a careful numeri- means by which the perturbations subsequently propagate.

cal examination of the examples presented in this paper.
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